Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149834, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547608

RESUMEN

BACKGROUND: Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS: Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 µM or higher, whereas wild-type cells displayed cell death at a concentration of 30 µM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 µM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 µM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS: The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.


Asunto(s)
Genes p53 , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Cadmio/metabolismo , Queratina-17/genética , Queratina-17/metabolismo , Proteómica , Línea Celular , Muerte Celular , Queratinocitos/metabolismo , Apoptosis/genética
2.
Genes Genomics ; 45(10): 1329-1338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634232

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE: This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS: Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS: KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/ß-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION: KRT17 can inhibit the Wnt/ß-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Antraciclinas , Doxorrubicina/farmacología , Queratina-17/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Vía de Señalización Wnt
3.
Int J Biol Sci ; 19(11): 3395-3411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497003

RESUMEN

Dysregulated glucose metabolism is an important characteristic of psoriasis. Cytoskeletal protein keratin 17 (K17) is highly expressed in the psoriatic epidermis and contributes to psoriasis pathogenesis. However, whether K17 is involved in the dysregulated glucose metabolism of keratinocytes (KCs) in psoriasis remains unclear. In the present study, loss- and gain-of-function studies showed that elevated K17 expression was critically involved in glycolytic pathway activation in psoriatic KCs. The level of α-enolase (ENO1), a novel potent interaction partner of K17, was also elevated in psoriatic KCs. Knockdown of ENO1 by siRNA or inhibition of ENO1 activity by the inhibitor ENOBlock remarkably suppressed KCs glycolysis and proliferation. Moreover, ENO1 directly interacted with K17 and maintained K17-Ser44 phosphorylation to promote the nuclear translocation of K17, which promoted the transcription of the key glycolysis enzyme lactic dehydrogenase A (LDHA) and resulted in enhanced KCs glycolysis and proliferation in vitro. Finally, either inhibiting the expression and activation of ENO1 or repressing K17-Ser44 phosphorylation significantly alleviated the IMQ-induced psoriasis-like phenotype in vivo. These findings provide new insights into the metabolic profile of psoriatic KCs and suggest that modulation of the ENO1-K17-LDHA axis is a potentially innovative therapeutic approach to psoriasis.


Asunto(s)
Queratina-17 , Psoriasis , Humanos , Proliferación Celular/genética , Glucosa/metabolismo , Queratina-17/genética , Queratina-17/metabolismo , Queratinocitos/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
4.
Biomolecules ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36139022

RESUMEN

Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT-PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.


Asunto(s)
Neoplasias de la Mama , Queratina-17 , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Interleucina-17/genética , Queratina-17/genética , ARN Mensajero
6.
Br J Dermatol ; 187(5): 773-777, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822506

RESUMEN

The phenotypic spectrum of genodermatoses is continuously expanding. Three siblings were referred because of a highly unusual phenotype comprising alopecia, dystrophic nails, palmoplantar keratoderma and trauma-induced skin blistering. Whole-exome sequencing analysis identified a heterozygous large genomic alteration of around 116 0000 bp resulting in the deletion of the KRT9, KRT14, KRT15, KRT16 and KRT19 genes, as well as part of KRT17. This genomic change leads to the generation of a truncated keratin 17 (KRT17) protein encoded by the first three exons of the gene and part of intron 3. The three patients were found to carry the heterozygous genomic deletion while their healthy parents did not, indicative of germline mosaicism. The genomic alteration was found to result in reduced KRT17 expression in patient skin. More importantly, the abnormal truncated KRT17 was found to exert a deleterious effect on keratinocyte cytoskeleton formation, leading to keratin aggregation. Coexpression of wildtype and truncated KRT17 proteins also caused keratin aggregation, demonstrating that the deletion exerts a dominant negative effect. In conclusion, we are reporting on a novel clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes, thus expanding the spectrum of clinical manifestations associated with keratin disorders. What is already known about this topic? Various conditions known as keratinopathies have been shown over recent years to be associated with dominant or recessive variants in several individual keratin genes. What does this study add? We report three patients presenting with a unique clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes. The genomic variant is predicted to result in a truncated form of keratin 17, which was found in an in vitro assay to disrupt keratinocyte cell cytoskeleton formation.


Asunto(s)
Queratina-17 , Queratinas , Queratina-17/genética , Heterocigoto , Fenotipo , Citoesqueleto , Mutación , Queratina-6/genética , Queratina-14/genética , Queratina-16
7.
Eur J Hum Genet ; 30(11): 1292-1296, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35676340

RESUMEN

We present the first pachyonychia congenita (PC) to involve all ectodermal derivatives and the first recessive KRT17-related PC in total seven members of two consanguineous Pakistani families. This atypical PC is characterized by an unusual combination of pachyonychia, plantar keratoderma, folliculitis, alopecia, sparse eyebrows, dental anomalies and variable acanthosis nigricans of neck, dry skin, palmoplantar hyperhidrosis, recurrent blisters on soles and/or arms, rough sparse hair on scalp and keratosis pilaris. By exome sequencing we detected homozygous KRT17 c.281G>A (p.(Arg94His)) in affected individuals, and linkage mapping indicated a single locus. Heterozygous variants in KRT17 cause PC2 (PC-K17) with main characteristics of pachyonychia, subungual keratosis, palmoplantar keratoderma, hyperhidrosis, oral leukokeratosis and epidermal cysts, or steatocystoma multiplex, both with dominant inheritance. The causative variant has been reported in heterozygous state in a family afflicted with severe steatocystoma multiplex and in a sporadic PC2 case, and thus we also define a third phenotype related to the variant. Both exome sequencing and linkage mapping demonstrated recessive inheritance whereas Sanger sequencing indicated heterozygosity for the causal variant, reiterating caution for simple targeted sequencing for genetic testing. Testing parents for variants found in sibs could uncover recessive inheritance also in other KRT genes.


Asunto(s)
Hiperhidrosis , Uñas Malformadas , Paquioniquia Congénita , Esteatocistoma Múltiple , Anomalías Dentarias , Humanos , Cejas , Queratina-17/genética , Mutación , Uñas Malformadas/genética , Paquioniquia Congénita/genética , Linaje
8.
J Biomed Sci ; 29(1): 42, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706019

RESUMEN

BACKGROUND: The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. METHODS: siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. RESULTS: Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin ß4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of ß-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin ß4, active ß-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. CONCLUSIONS: A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/ß-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Queratina-17/metabolismo , MicroARNs , Neoplasias de la Boca , Animales , Carboplatino/farmacología , Carboplatino/uso terapéutico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Integrina beta4/genética , Integrina beta4/metabolismo , Integrinas/genética , Integrinas/metabolismo , Integrinas/uso terapéutico , Queratina-17/genética , Queratina-17/farmacología , Ratones , MicroARNs/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Plectina/genética , Plectina/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , beta Catenina/genética
9.
Br J Dermatol ; 187(3): 392-400, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35606927

RESUMEN

BACKGROUND: The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. OBJECTIVES: To determine the genetic defect underlying the coexistence of PC and HS in a large kindred, to delineate a pathophysiological signalling defect jointly leading to both phenotypes, and to estimate the prevalence of HS in PC. METHODS: We used direct sequencing and a NOTCH luciferase reporter assay to characterize the pathophysiological basis of the familial coexistence of HS and PC. A questionnaire was distributed to patients with PC registered with the International Pachyonychia Congenita Research Registry (IPCRR) to assess the prevalence of HS among patients with PC. RESULTS: Direct sequencing of DNA samples obtained from family members displaying both PC and HS demonstrated a missense variant (c.275A>G) in KRT17, encoding keratin 17. Abnormal NOTCH signalling has been suggested to contribute to HS pathogenesis. Accordingly, the KRT17 c.275A>G variant resulted in a significant decrease in NOTCH activity. To ascertain the clinical importance of the association of HS with PC, we distributed a questionnaire to all patients with PC registered with the IPCRR. Seventy-two of 278 responders reported HS-associated clinical features (25·9%). Disease-causing mutations in KRT17 were most prevalent among patients with a dual phenotype of PC and HS (43%). CONCLUSIONS: The coexistence of HS and KRT17-associated PC is more common than previously thought. Impaired NOTCH signalling as a result of KRT17 mutations may predispose patients with PC to HS. What is already known about this topic? The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. What does this study add? A dual phenotype consisting of PC and HS was found to be associated with a pathogenic variant in KRT17. This variant was found to affect NOTCH signalling, which has been previously implicated in HS pathogenesis. HS was found to be associated with PC in a large cohort of patients with PC, especially in patients carrying KRT17 variants, suggesting that KRT17 variants causing PC may also predispose to HS. What is the translational message? These findings suggest that patients with PC have a higher prevalence of HS than previously thought, and hence physicians should have a higher level of suspicion of HS diagnosis in patients with PC.


Asunto(s)
Hidradenitis Supurativa , Paquioniquia Congénita , Hidradenitis Supurativa/complicaciones , Hidradenitis Supurativa/genética , Humanos , Queratina-17/genética , Mutación/genética , Paquioniquia Congénita/complicaciones , Paquioniquia Congénita/diagnóstico , Paquioniquia Congénita/genética , Fenotipo
10.
Cancer Res ; 82(7): 1159-1166, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921015

RESUMEN

There is an unmet need to identify and validate tumor-specific therapeutic targets to enable more effective treatments for cancer. Heterogeneity in patient clinical characteristics as well as biological and genetic features of tumors present major challenges for the optimization of therapeutic interventions, including the development of novel and more effective precision medicine. The expression of keratin 17 (K17) is a hallmark of the most aggressive forms of cancer across a wide range of anatomical sites and histological types. K17 correlates with shorter patient survival, predicts resistance to specific chemotherapeutic agents, and harbors functional domains that suggest it could be therapeutically targeted. Here, we explore the role of K17 in the hallmarks of cancer and summarize evidence to date for K17-mediated mechanisms involved in each hallmark, elucidating functional roles that warrant further investigation to guide the development of novel therapeutic strategies.


Asunto(s)
Queratina-17 , Neoplasias , Antineoplásicos/farmacología , Carcinogénesis/genética , Humanos , Queratina-17/genética , Queratina-17/metabolismo
11.
J Orofac Orthop ; 83(Suppl 1): 65-74, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33725141

RESUMEN

PURPOSE: The goal of this study was to assess genes known to be associated with tooth agenesis with next-generation sequencing (NGS) and analyze the relationship between these mutations and tooth agenesis phenotypes. METHODS: The study included 49 individuals aged between 6 and 13 years. A total of 14 genes related to nonsyndromic tooth agenesis were selected for targeted NGS. Mutations in Msh homeobox 1 (MSX1), Wnt family member 10A (WNT10A), axis inhibition protein 2 (AXIN2), keratin 17 (KRT17), lipoprotein receptor 6 (LRP6), and secreted protein, acidic and rich in cysteine (SPARC)-related modular calcium-binding protein 2 (SMOC2) genes were investigated. RESULTS: Mutations in six genes were detected in 12 of 49 subjects. Fifteen variants were identified, including the unknown variants c.657G > C in MSX1, c.2029C > T in AXIN2, and c.1603A > T in LRP6. Second premolar tooth agenesis was observed in 43.3% of all tooth agenesis cases with mutations, and it was the predominant phenotype observed for each mutated gene, followed by tooth agenesis of the lateral incisors (20%). CONCLUSIONS: Variations in MSX1, WNT10A, AXIN2, KRT17, LRP6, and SMOC2 may be a risk factor for hypodontia or oligodontia in the Turkish population.


Asunto(s)
Anodoncia , Receptores de Lipoproteína , Humanos , Anodoncia/diagnóstico , Anodoncia/epidemiología , Anodoncia/genética , Proteínas de Unión al Calcio/genética , Cisteína/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Queratina-17/genética , Mutación/genética , Receptores de Lipoproteína/genética , Turquia
12.
Semin Cell Dev Biol ; 128: 112-119, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34229948

RESUMEN

Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.


Asunto(s)
Queratina-17 , Psoriasis , Animales , Citocinas/metabolismo , Epidermis/metabolismo , Humanos , Queratina-17/genética , Queratina-17/metabolismo , Queratinocitos/patología , Ratones , Psoriasis/genética , Psoriasis/metabolismo , Psoriasis/patología
13.
Bioengineered ; 12(2): 12598-12611, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935584

RESUMEN

Colon adenocarcinoma (COAD), having high malignancy and poor prognosis, is the main pathological type of colon cancer. Previous studies show that Keratin 17 (KRT17) plays an important role in the development of many malignant tumors. However, its role and the molecular mechanism underlying COAD remain unclear. Using TCGA and ONCOMINE databases, as well as immunohistochemistry, we found that the expression of KRT17 was higher in COAD tissues as compared to that in the adjacent normal tissues. Cell- and animal-based experiments showed that overexpression of KRT17 promoted the invasion and metastasis of colon cancer cells while knocking down KRT17 reversed these processes both in vitro and in vivo. In addition, we also showed that KRT17 promoted the formation of new blood vessels. Mechanistically, KRT17 could regulate the WNT/ß-catenin signaling pathway, and APC may be involved in this process by interacting with KRT17. In summary, these findings suggested that high expression of KRT17 could promote cell metastasis and angiogenesis of colon cancer cells by regulating the WNT/ß-catenin signaling pathway. Thus, KRT17 could be a potential therapeutic target for COAD treatment.


Asunto(s)
Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Queratina-17/genética , Neovascularización Patológica/genética , Regulación hacia Arriba , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Línea Celular Tumoral , Pollos , Neoplasias del Colon/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Queratina-17/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética
15.
J Invest Dermatol ; 141(12): 2876-2884.e4, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34116063

RESUMEN

Pachyonychia congenita (PC) is a genetic disorder of keratin that presents with nail dystrophy, painful palmoplantar keratoderma, and other clinical manifestations. We investigated the genotype‒structurotype‒phenotype correlations seen with mutations in keratin genes (keratin [K]6A, K6B, K6C, K16, K17) and utilized protein structure modeling of high-frequency mutations to examine the functional importance of keratin structural domains in PC pathogenesis. Participants of the International PC Research Registry underwent genetic testing and completed a standardized survey on their symptoms. Our results support previous reports associating oral leukokeratosis with K6A mutations and cutaneous cysts, follicular hyperkeratosis, and natal teeth with K17 mutations. Painful keratoderma was prominent with K6A and K16 mutations. Nail involvement was most common in patients with K6A mutation and least common in those with K6C mutation. Across keratin subtypes, patients with coil 2B mutations had the greatest impairment in ambulation, and patients with coil 1A mutations reported more emotional issues. Molecular modeling demonstrated that hotspot missense mutations in PC largely disrupted hydrophobic interactions or surface charge. The former may destabilize keratin dimers/tetramers, whereas the latter likely interferes with higher-order keratin filament formation. Understanding the pathologic alterations in keratin structure improves our knowledge of how PC genotype correlates with clinical phenotype, advancing insight into disease pathogenesis and therapeutic development.


Asunto(s)
Estudios de Asociación Genética , Queratinas/genética , Mutación , Paquioniquia Congénita/genética , Humanos , Queratina-16/genética , Queratina-17/genética , Queratina-6/genética , Modelos Moleculares , Paquioniquia Congénita/psicología
16.
Cancer Cytopathol ; 129(11): 865-873, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34076963

RESUMEN

BACKGROUND: Although pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers, differences in survival exist between patients with clinically identical characteristics. The authors previously demonstrated that keratin 17 (K17) expression in PDAC, measured by RNA sequencing or immunohistochemistry (IHC), is an independent negative prognostic biomarker. Only 20% of cases are candidates for surgical resection, but most patients are diagnosed by needle aspiration biopsy (NAB). The aims of this study were to determine whether there was a correlation in K17 scores detected in matched NABs and surgical resection tissue sections and whether K17 IHC in NAB cell block specimens could be used as a negative prognostic biomarker in PDAC. METHODS: K17 IHC was performed for a cohort of 70 patients who had matched NAB cell block and surgical resection samples to analyze the correlation of K17 expression levels. K17 IHC was also performed in cell blocks from discovery and validation cohorts. Kaplan-Meier and Cox proportional hazards regression models were analyzed to determine survival differences in cases with different levels of K17 IHC expression. RESULTS: K17 IHC expression correlated in matched NABs and resection tissues. NAB samples were classified as high for K17 when ≥80% of tumor cells showed strong (2+) staining. High-K17 cases, including stage-matched cases, had shorter survival. CONCLUSIONS: K17 has been identified as a robust and independent prognostic biomarker that stratifies clinical outcomes for cases that are diagnosed by NAB. Testing for K17 also has the potential to inform clinical decisions for optimization of chemotherapeutic interventions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/metabolismo , Biopsia con Aguja , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Humanos , Queratina-17/genética , Queratina-17/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , Neoplasias Pancreáticas
17.
Nat Commun ; 12(1): 2761, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980830

RESUMEN

At numerous locations of the body, transition zones are localized at the crossroad between two types of epithelium and are frequently associated with neoplasia involving both type of tissues. These transition zones contain cells expressing markers of adult stem cells that can be the target of early transformation. The mere fact that transition zone cells can merge different architecture with separate functions implies for a unique plasticity that these cells must display in steady state. However, their roles during tissue regeneration in normal and injured state remain unknown. Here, by using in vivo lineage tracing, single-cell transcriptomics, computational modeling and a three-dimensional organoid culture system of transition zone cells, we identify a population of Krt17+ basal cells with multipotent properties at the squamo-columnar anorectal junction that maintain a squamous epithelium during normal homeostasis and can participate in the repair of a glandular epithelium following tissue injury.


Asunto(s)
Canal Anal/citología , Homeostasis , Recto/citología , Regeneración , Células Madre/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Humanos , Mucosa Intestinal/citología , Queratina-17/genética , Queratina-17/metabolismo , Ratones , Organoides/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cicatrización de Heridas
18.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33762306

RESUMEN

High levels of the intermediate filament protein keratin 17 (K17) are associated with poor prognoses for several human carcinomas. Studies in mouse models have shown that K17 expression is positively associated with growth, survival, and inflammation in skin and that lack of K17 delays onset of tumorigenesis. K17 occurs in the nucleus of human and mouse tumor keratinocytes where it impacts chromatin architecture, gene expression, and cell proliferation. We report here that K17 is induced following DNA damage and promotes keratinocyte survival. The presence of nuclear K17 is required at an early stage of the double-stranded break (DSB) arm of the DNA damage and repair (DDR) cascade, consistent with its ability to associate with key DDR effectors, including γ-H2A.X, 53BP1, and DNA-PKcs. Mice lacking K17 or with attenuated K17 nuclear import showed curtailed initiation in a two-step skin carcinogenesis paradigm. The impact of nuclear-localized K17 on DDR and cell survival provides a basis for the link between K17 induction and poor clinical outcomes for several human carcinomas.


Asunto(s)
Carcinoma/genética , Reparación del ADN , Queratina-17/metabolismo , Queratinas/metabolismo , Neoplasias Experimentales/genética , 9,10-Dimetil-1,2-benzantraceno/administración & dosificación , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Transporte Activo de Núcleo Celular , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma/inducido químicamente , Carcinoma/patología , Núcleo Celular/metabolismo , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Microscopía Intravital , Queratina-17/genética , Queratinocitos , Queratinas/genética , Masculino , Ratones Noqueados , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Imagen de Lapso de Tiempo
19.
Cancer Med ; 10(6): 2063-2074, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624385

RESUMEN

AIMS: To investigate novel biomarker for diagnosis of cervical cancer, we analyzed the datasets in Gene Expression Omnibus (GEO) and confirmed the candidate biomarker in patient sample. MATERIALS AND METHODS: We collected major datasets of cervical cancer in GEO, and analyzed the differential expression of normal and cancer samples online with GEO2R and tested the differences, then focus on the GSE63514 to screen the target genes in different histological grades by using the R-Bioconductor package and R-heatmap. Then human specimens from the cervix in different histological grades were used to confirm the top 8 genes expression by immunohistochemical staining using Ki67 as a standard control. RESULTS: We identified genes differentially expressed in normal and cervical cancer, 274 upregulated genes and 206 downregulated genes. After intersection with GSE63514, we found the obvious tendency in different histological grades. Then we screened the top 24 genes, and confirmed the top 8 genes in human cervix tissues. Immunohistochemical (IHC) results confirmed that keratin 17 (KRT17) was not expressed in normal cervical tissues and was over-expressed in cervical cancer. Cysteine-rich secretory protein-2 (CRISP2) was less expressed in high-grade squamous intraepithelial lesions (HSILs) than in other histological grades. CONCLUSION: For the good repeatability and consistency of KRT17 and CRISP2, they may be good candidate biomarkers. Combined analysis of KRT17, CRISP2 expression at both genetic and protein levels can determine different histological grades of cervical squamous cell carcinoma. Such combined analysis is capable of improving diagnostic accuracy of cervical cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Moléculas de Adhesión Celular/genética , Queratina-17/genética , Displasia del Cuello del Útero/genética , Neoplasias del Cuello Uterino/genética , Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/química , Carcinoma de Células Escamosas/patología , Moléculas de Adhesión Celular/análisis , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Cuello del Útero/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Desmogleína 1/análisis , Desmogleína 1/genética , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-17/análisis , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Clasificación del Tumor , Proteínas de Neurofilamentos/análisis , Proteínas de Neurofilamentos/genética , Proteínas y Péptidos Salivales/análisis , Proteínas y Péptidos Salivales/genética , Proteínas de Plasma Seminal/análisis , Proteínas de Plasma Seminal/genética , Regulación hacia Arriba , Neoplasias del Cuello Uterino/química , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/química , Displasia del Cuello del Útero/patología
20.
Folia Histochem Cytobiol ; 59(1): 40-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33577073

RESUMEN

INTRODUCTION: Bladder cancer (BCa) is one the most common urinary system malignancies and approximately one quarter of diagnosis is invasive muscle-invasive BCa. Accumulating evidence revealed that keratin 17 (KRT17) is closely related to the prognosis and progression of various tumors including a recent study also implying the potential role of KRT17 in the diagnosis of BCa. However, the specific role of KRT17 in BCa remains to be elucidated. MATERIAL AND METHODS: The expression of KRT17 in 5637 BCa cells and SV-HUC-1 normal human urothelial cells was detected using quantitative real-time PCR (qRT-PCR) and western blot. Short hairpin RNA targeting KRT17 was used to knockdown KRT17 in BCa cells. The colony formation was assessed and the proliferation of cells was studied by Cell Counting Kit-8 (CCK-8). Invasion and epithelial-mesenchymal transition (EMT) capacity of BCa cells were assessed using transwell assay and western blot, respectively. Cisplatin sensitivity of cancer cells was measured by evaluating the cell viability using CCK-8 assay. The downstream pathway of KRT17 was explored by western blot. RESULTS: The expression of KRT17 was elevated in BCa cells in comparison with the normal human urothelial cell at the mRNA and protein levels. The in vitro assays demonstrated that KRT17 interference affected the proliferation, colony formation and invasion capacity of BCa cells, as well as EMT. Furthermore, knockdown of KRT17 enhanced cisplatin sensitivity in BCa cells. Mechanically, KRT17 ablation led to the inactivation of both AKT and ERK pathways. CONCLUSIONS: Our results elucidate the vital role of KRT17 in the development of malignancy of BCa cells, probably by the activation of AKT and ERK pathways and suggest that it may represent a novel therapeutic target for BCa.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Queratina-17/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Técnicas de Silenciamiento del Gen , Humanos , Queratina-17/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...